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Two entwined topics
For what quark masses is CP spontaneously broken?

m,, = 0 1S not a physically meaningful concept.

M.C., PRL 92:201601 (2004) and PRL 92:162003 (2004)
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Assumptions
QCD exists and confines

Effective chiral Lagrangians are qualitatively correct

Based on old ideas
Dashen (1971)
Georgi and McArthur (1981); Kaplan and Manohar (1986)
Banks, Nir and Seiberg (1994)
MC (1995)
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Controversial

first version (hep-th/0303254) rejected by Phys. Rev.

“I think it is wrong. Like the previous referee, | am somewhat
concerned that the errors are so obvious.”
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The effective meson theory Y = exp(imada/fr) € SU(I)
three flavors: up, down, strange
Ao generators of SU(3)

T pseudoscalar octet fields

Chiral symmetry Y — gl Sgr

explicitly broken by quark masses

2
L = Z”Tr([)METQLE) — v Re Tr(XM)

m, 0 0
M = 0 mq 0
0 0 mg
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Expand to quadratic order in meson fields
diagonalize to find meson masses m?ri ~ My + My

Isospin violating my — m,, mixes 7 and n

2

mﬂ.oN

2

3 mu—|—md—|—m8—\/m%—l—m?l—l—mg—mumd—mums—mdms
2

My,

2

3 mu—|—md—|—m8—|—\/m%—l—m?l—l—mg—mumd—mums—mdms

m2_ can vanish
requires a negative quark mass m,, = —"sd

ms +md

5 Tsukuba University M. Creutz, 16 December 2004



Negative quark masses do unusual things
anomaly makes sign of mass significant

Usual case:
vacuum at maximum of ReIrX
occursat . =1

Negative degenerate masses:
vacuum at minimum of ReTrX:
—I NOT in SU(3)

Im Trg

two solutions: ¥ = exp(+27i/3)

CP: X — X

spontaneously broken

SIU(3) |

Re Trg
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With negative quark masses m?2, can go negative

2
3 <mu +mg +ms — \/m% + m3 +m2 — mymg — myms — mdms)
Vanishes at
—MmMsMy
My =
ms + My

boundary for pion condensed phase (7") # 0

Similar boundaries at appropriate branches of

—Mmgmg

My, —
j:ms + mq
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New vacuum state

My, sin(¢y) = mgsin(¢s) = —mgsin(¢r + ¢2)

second order transition at m_o = 0
two degenerate vacua related by ¢; < —o;

CP violation appears in three-pseudoscalar couplings
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mq, Mg) Plane at fixed m:

oundaries at
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Vafa and Witten: No spontaneous P Iin the strong interactions?

assumes fermion determinant positive

not true for negative quark masses

Non perturbative
sign of quark masses significant

negative | M| corresponds to § = «

7,

\
100
N D( 0-1 0)
N 00-1

7
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Hold heavier quark masses m, and my fixed

look at complex m,, plane
Imm,,

<

<, >F0 Rem
ﬁ

Nothing significant occurs at m,, = 0 when mg4 # 0
First order transition along negative Re m axis
second order critical point at non-zero Re m < 0
spontaneous breaking of CP, order parameter: (mg)
Di Vecchia and Veneziano (1980)
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Does m,, = 0 have any physical significance?
not a well posed question if mg £ 0, ms # 0

unacceptable solution to the strong CP problem

Concept of an “underlying basic Lagrangian’” does not exist
must regulate divergences
only underlying symmetries significant
a single massless quark gives no special symmetry

anomaly: no exact Goldstone bosons at m, = 0

Continuum theory defined as a limit
bare parameters: coupling g and quark masses m;

renormalize to zero in continuum limit
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Renormalization group equations
a = 1/T" cutoff « physical scale 1/u

d

a——g = B(g9) = Bog® + B1g° + ... + non-perturbative
a
d .
a-m= m~(g) = m(v0g” + 119" + ...) + non-perturbative
a

Bo, (1, 70 scheme independent

Bo= Tt — 0654365977 (nj = 1)
b= — 0036091343 (ny = 1)
0= G = 0506605918

“Non-perturbative” parts
fall faster than any power of g as g — 0
not proportional to quark mass
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Solution

1 2 2
a= e PRy RI% (1 0(g%)

m = Mg™/? (14 0(g*))

Continuum limita — 0

2 1
J log(1/Aa)

1 Yo/ Bo
o~ M 0
. (mg(l/Aa)) B

0 “asymptotic freedom”
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Physical quantities fixed along renormalization group trajectory

mpa mﬂ'

A, M: “integration constants”
A: “QCD scale”
M: “renormalized quark mass”

6—1/250929—51/53

A = lim

a—0 a

M = lim mg_%/ﬁo

a—0

Numerical values of A, M depend on scheme
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Defining 3(g), v(9)
fix physical quantities
adjust bare parameters as the cutoff is removed

use particle masses m;(g, m,a) as physical

dmz' (ga m, CL) amz

da dg

16 Tsukuba University M. Creutz, 16 December 2004



Work with degenerate quarks for simplicity

Two bare parameters (g, m) = fix two masses

m,: lightest baryon

m. lightest boson

a/amﬂ. amp o aamp 8’7’)’1,71-

6(9) _ Oda Om da Om
(9mp Oom . Oom 8mp
dg Om dg Om

om (9mp 8mp om
@ 5a 59 — % a9

(9) = —5.— o
/y 8mp om om 8"'n'p
om Og om Og

Includes all perturbative and non-perturbative effects
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Physical masses map onto the integration constants
A=Ampy,my) M = M(my, mz)
inverting — m; = m;(A, M)

dimensional analysis: m; = Nfi(M/A)

Multi-flavor theory
expect Goldstone bosons
’17’L72T ~ mq

square root singularity ~ f,(z) ~ x1/2

removes any additive ambiguity in defining M
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The one flavor theory my = ANf.(M/A)
no chiral symmetry
no Goldstone bosons
m, = 0 occurs at negative quark mass

f=(x) smooth, non-vanishing at x = 0

Im m,

<, >F0 Rem
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Non-perturbative contributions to mass flow
e not proportional to quark mass
o ‘“instantons” flip all quark spins

mqm
® ATn'u ~ chdsa chd

m,, = 01s NOT renormalization group invariant
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Matching between schemes

Preserve lowest order perturbative limit as ¢ — 0 at fixed scale a

g = g+ O(g®) + non-perturbative

~

m = m(1+ O(g?)) + non-perturbative

“non-perturbative’” vanishes faster than any power of g
Integration constants A, M depend on scheme chosen

Fixed a not the continuum limit

g — 0 at fixed a: perturbation theory on free quarks
a — 0 at fixed g: diverges
a,g — 0 on RG trajectory: confinement
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Example new scheme:

a=a
g—4g
—1/280g2 —B1/82
m =m — Mgr/Po x € (209”9701 /%
Aa

Non-perturbative redefinition of parameters makes

M = lim g~ "/% = M — M =0

a—0
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A scheme always exists where the renormalized quark mass vanishes!

M = 0 is not a physical concept!

Degenerate quarks:
define massless by the location of the square root singularity

23 Tsukuba University M. Creutz, 16 December 2004



On the lattice

Renormalization flows depend on details of lattice action
Wilson -- Staggered -- Domain wall -- Overlap

Overlap not unique
depends on Dirac operator being projected
starting with Wilson: input negative mass is adjustable

The one flavor theory dynamically generates a gap
appears in the spectrum of the Dirac operator
size of gap not protected by the overlap projection

Can M = 0 be preserved between schemes?
not guaranteed by the Ginsparg-Wilson condition
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Non-vanishing ¢

Three bare parameters
g Re my, Im m,,

Explicit CP violation if Im m,, # 0

Need to fix three physical parameters
mp1 mﬂ'

neutron electric dipole moment

Three integration constants

6—1/2[3092 —B1/88

a

Re M = lim,_o ¢/ Re m

g

A= hma_>0

Im M = lim,_,9 gVO/BO Im m
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Conventional variables

A
M|
f:  tan(h) = mM

Additive shift in M makes these coordinates singular
¢ undefined if [M| =0

precise value of § scheme dependent
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Topological Susceptibility

With a GW action:
massless quark synonymous with zero topological susceptibility

Is topological susceptibility uniquely defined for N, < 27?
Luscher: no perturbative infinities

Admissibility condition
forbid plaquettes further than a finite distance ¢ from the origin
removes “rough” gauge fields
gives a unigue winding number

Theorem: MC, hep-lat/0409017
admissibility incompatible with reflection positivity
proof an extension of Grosse and Kuhnelt, 1982
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CONCLUSIONS

Strong interactions can spontaneously violate CP
large regions of parameter space

negative quark masses

m,, = 0 1S not a meaningful concept
not a solution to the strong CP problem
non-perturbative

topological susceptibility not uniquely defined for Ny < 2

Avallable simulation algorithms cannot explore this physics
sign problem

the “square root trick” fails
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Closing thought problem

0 = arg(det(M))
phase can be shuffled between different quarks

put all phases into the top-quark mass

How can a complex top-quark mass affect low energy physics?

29 Tsukuba University M. Creutz, 16 December 2004



